colonel Documentation
Release 1.2.0

The NLP Odyssey Authors

May 06, 2018

Contents

1 colonel package 3
I.1 Subpackages e e e e e e e e 3
1.2 Submodules e e 8
1.3 Modulecontents e e e e e e e e e e e e e e 15

2 Python Module Index 21

3 Alphabetical Index 23

Python Module Index 25

colonel Documentation, Release 1.2.0

Colonel is a Python 3 library for handling CoNLL data formats.

Contents 1

https://travis-ci.org/nlpodyssey/colonel
https://codecov.io/gh/nlpodyssey/colonel
https://coveralls.io/github/nlpodyssey/colonel?branch=master
https://gitter.im/nlpodyssey/colonel?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge

colonel Documentation, Release 1.2.0

2 Contents

CHAPTER 1

colonel package

1.1 Subpackages

1.1.1 colonel.conllu package
Submodules

colonel.conllu.lexer module

Module providing the ConlluLexerBuilder class and related exception classes.

class colonel.conllu.lexer.ConlluLexerBuilder
Bases: object

Class containing PLY Lex rules for processing the CoNLL-U format and for creating new related PLY Lexer
instances.

Usually you can simply invoke the class method build () which returns a PLY Lexer; such lexer instance is
ready to process your input, making use of the rules provided by the ConllulLexerBuilder class itself.

classmethod build()
Returns a PLY Lexer instance for CoNLL-U processing.

The returned lexer makes use of the rules defined by ConllulLexerBuilder.
Return type Lexer

static find column (foken)
Given a LexToken, it returns the related column number.

Return type int
states = (('v0', 'exclusive'), ('vl', 'exclusive'), ('v2', 'exclusive'), ('v3', 'exclu
static t_ANY error (token)

Return type None

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

colonel Documentation, Release 1.2.0

static t_COMMENT (foken)
[#][*n]*

Return type LexToken

static t_ DECIMAL ID (foken)
([1-9][0-9]+I[0-9]).[1-9][0-9]*

Return type LexToken

t_INITIAL v9_NEWLINE (foken)
n

Return type LexToken

static t_INTEGER_ID (token)
[1-9][0-9]*

Return type LexToken

static t_RANGE_ID (token)
[1-9][0-9]*-[1-9][0-9]*

Return type LexToken

static t_cl FORM (foken)
[“nt]+

Return type LexToken

static t_c2_ LEMMA (token)
[*nt]+

Return type LexToken
static t_c3_UPOS (token)
Return type LexToken

static t_c4 XPOS (token)
[*nt]+

Return type LexToken
static t_c5_ FEATS (token)
Return type LexToken

static t_c6_HEAD (foken)
([1-9][0-9]+I[0-9])I_

Return type LexToken

static t_c7_ DEPREL (foken)
[*nt]+

Return type LexToken
static t_c8_ DEPS (foken)
Return type LexToken

static t_c9 MISC (token)
[*nt]+

Return type LexToken

4 Chapter 1. colonel package

colonel Documentation, Release 1.2.0

t v0 vl v2 v3 _v4_v5 _v6_v7_v8_ TAB (token)
t

Return type LexToken
tokens = ('NEWLINE', 'TAB', 'COMMENT', 'INTEGER ID', 'RANGE_ID', 'DECIMAL_ID',

exception colonel.conllu.lexer.IllegalCharacterError (token)
Bases: colonel.conllu.lexer.LexerError

Exception raised by ConllulLexerBuilder when a lexer error caused by invalid input is encountered.

An exception instance must be initialized with the LexToken which the lexer was not able to process, so
that 1 ine number and column_number can be extracted; a short error message is also generated by the
constructor.

column_number = None
Column position, associated with 1 ine number, containing the illegal character, or the start of an illegal
sequence.

line_number = None
Line number containing the illegal character, or the start of an illegal sequence.

exception colonel.conllu.lexer.LexerError
Bases: Exception

Generic error class for ConllulLexerBuilder.

colonel.conllu.parser module

Module providing the ConlluParserBuilder class and related exception classes.

class colonel.conllu.parser.ConlluParserBuilder
Bases: object

Class containing PLY Yacc rules for processing the CoNLL-U format and for creating new related PLY
LRParser instances.

Usually you can simply invoke the class method build () which returns a PLY LRParser; such parser
instance is ready to process your input, making use of the rules provided by the ConlluParserBuilder
class itself.

As wusual, this class is paired with an associated lexer, which in in this case is served by
ConlluLexerBuilder.

classmethod build()
Returns a PLY LRParser instance for CoNLL-U processing.

The returned parser makes use of the rules defined by ConlluParserBuilder.
Return type LRParser

static p_comment (prod)
comment : COMMENT NEWLINE

Return type None

static p_comments_many (prod)
comments : comments comment

Return type None

1.1. Subpackages 5

"FORM',

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

colonel Documentation, Release 1.2.0

static p_comments_one (prod)
comments : comment

Return type None
static p_error (token)
Return type None

static p_sentence_with_comments (prod)
sentence : comments wordlines NEWLINE

Return type None

static p_sentence_without_comments (prod)
sentence : wordlines NEWLINE

Return type None

static p_sentences_many (prod)
sentences : sentences sentence

Return type None

static p_sentences_one (prod)
sentences : sentence

Return type None

static p_wordline_emptynode (prod)
wordline : DECIMAL_ID TAB FORM TAB LEMMA TAB UPOS TAB XPOS TAB FEATS TAB HEAD
TAB DEPREL TAB DEPS TAB MISC NEWLINE

Return type None

static p_wordline_multiword (prod)
wordline : RANGE_ID TAB FORM TAB LEMMA TAB UPOS TAB XPOS TAB FEATS TAB HEAD
TAB DEPREL TAB DEPS TAB MISC NEWLINE

Return type None

static p_wordline_word (prod)
wordline : INTEGER_ID TAB FORM TAB LEMMA TAB UPOS TAB XPOS TAB FEATS TAB HEAD
TAB DEPREL TAB DEPS TAB MISC NEWLINE

Return type None

static p_wordlines_many (prod)
wordlines : wordlines wordline

Return type None

static p_wordlines_one (prod)
wordlines : wordline

Return type None

exception colonel.conllu.parser.IllegalEmptyNodeError (prod)
Bases: colonel.conllu.parser.ParserError

Exception raised by ConlluParserBuilder when aword line was parsed correctly and has been recognised
as an empty node line, however the data is not valid for this kind of element.

An exception instance must be initialized with the YaccProduction related to the word line containing ille-
gal data, so that the 1ine_number can be extracted; a short error message is also generated by the constructor.

6 Chapter 1. colonel package

colonel Documentation, Release 1.2.0

exception colonel.conllu.parser.IllegalEofError
Bases: colonel.conllu.parser.ParserError

Exception raised by ConlluParserBuilder when a parser error caused by invalid end-of-file is encoun-
tered.

When this exception is raised, it means that the end of the input data has been reached, but some additional
tokens were expected in order to be valid CoNLL-U.

exception colonel.conllu.parser.IllegalMultiwordError (prod)
Bases: colonel.conllu.parser.ParserError

Exception raised by ConlluParserBuilder when aword line was parsed correctly and has been recognised
as a multiword token line, however the data is not valid for this kind of element.

An exception instance must be initialized with the YaccProduction related to the word line containing ille-
gal data, so that the 1ine_number can be extracted; a short error message is also generated by the constructor.

exception colonel.conllu.parser.IllegalTokenError (f)
Bases: colonel.conllu.parser.ParserError

Exception raised by ConlluParserBuilder when a parser error caused by invalid token is encountered.

An exception instance must be initialized with the LexToken which the parser was not able to process, so that
all the exception attributes can be extracted; a short error message is also generated by the constructor.

column_number = None
Column position, associated with 1ine_number, related to the illegal token encountered, or to the first
token of an illegal tokens sequence.

line_number = None
Line number related to the illegal token encountered, or to the first token of an illegal tokens sequence.

type = None
The type of the illegal token encountered, or of the first token of an illegal tokens sequence.

value = None
The value of the illegal token encountered, or of the first token of an illegal tokens sequence.

exception colonel.conllu.parser.ParserError
Bases: Exception

Generic error class for ConlluParserBuilder.

Module contents

This package provides methods and modules to process the CoNLL-U format.

In most situations it’s sufficient to make use of parse () and to_conllu () functions, without caring too much
about the implementation under the hood.

In more detail, this package provides a lexical analyzer (see exer) and a parser (see parser) to transform the raw
string input into related Sentence objects.

Lexer and parser classes are implemented taking advantage of the PLY (Python Lex-Yacc) library; you can learn more
from the PLY documentation and from the Lex & Yacc Page.

colonel.conllu.parse (content)
Parses a CoNLL-U string content, returning a list of sentences.

Raises

1.1. Subpackages 7

https://docs.python.org/3/library/exceptions.html#Exception
http://www.dabeaz.com/ply
http://dinosaur.compilertools.net/

colonel Documentation, Release 1.2.0

* lexer.LexerError — (any specific subclass) in case of invalid input breaking the rules
of the CoNLL-U lexer

* parser.ParserError — (any specific subclass) in case of invalid input breaking the
rules of the CoNLL-U parser

Parameters content (str)— CoNLL-U formatted string to be parsed
Return type List[Sentence]
Returns list of parsed Sentence items

colonel.conllu.to_conllu (sentences)
Serializes a list of sentences to a formatted CoNLL-U string.

This method simply concatenates the output of Sentence.to_conllu () for each given sentence and do
not perform any validity check; sentences and elements not compatible with CoNLL-U format could lead to an
incorrect output value or raising of exceptions.

Parameters sentences (List[Sentence])-list of Sentence items
Return type str

Returns a CoNLL-U formatted representation of the sentences

1.2 Submodules

1.2.1 colonel.base_rich_sentence_element module

Module providing the BaseRichSentenceElement class.

class colonel.base_rich_ sentence_element .BaseRichSentenceElement (lemma=None,

upos=None,
xpos=None,
feats=None,
deps=None,
**kwargs)

Bases: colonel.base_sentence_element.BaseSentenceElement

Abstract class containing basic information in common with some specific elements being part of a sentence.

It is compliant with the CoNLL-U format, in the sense that it provides a common foundation for elements of
type word and empty nodes, which can be made up of a richer set of fields in comparison to other elements, such
as the (multiword) tokens.

deps
Enhanced dependency graph, usually in the form of a list of head-deprel pairs.

It is compatible with CoNLL-U DEPS field.
You are free to assign to it any kind of value suitable for your project.

feats
List of morphological features from the universal feature inventory or from a defined language-specific

extension.
It is compatible with CoNLL-U FEATS field.

You are free to assign to it any kind of value suitable for your project.

8 Chapter 1. colonel package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

colonel Documentation, Release 1.2.0

is_wvalid()
Returns whether or not the object can be considered valid, however ignoring the context of the sentence in
which the word itself is possibly inserted.

An instance of type BaseRichSentenceElement is always considered valid, independently from any
value of its attributes (it doesn’t provide any additional check to the overridden superclass method).

lemma
Lemma of the element.

It is compatible with CoNLL-U LEMMA field.

to_conllu ()
Returns a CoNLL-U formatted representation of the element.

This method is expected to be overridden by each specific element.

upos
Universal part-of-speech tag.

It is compatible with CoNLL-U UPOS field.

Xpos
Language-specific part-of-speech tag.

It is compatible with CoNLL-U XPOS field.

1.2.2 colonel.base_sentence_element module

Module providing the BaseSentenceElement class.

class colonel.base_sentence_element .BaseSentenceElement (form=None, misc=None)
Bases: object

Abstract class containing the minimum information in common with all specific elements being part of a sen-
tence.

In the context of this library, it is expected that each item of a sentence is an instance of a
BaseSentenceElement subclass.

The generic term element is used in order to prevent confusion, while each specialized element (i.e. a subclass of
BaseSentenceElement) will adopt a more appropriate naming convention, so that, for example, a sentence
will be usually formed by words, tokens or nodes.

form
Word form or punctuation symbol.

It is compatible with CoNLL-U FORM field.

is_wvalid()
Returns whether or not the object can be considered valid, however ignoring the context of the sentence in
which the word itself is possibly inserted.

An instance of type BaseWord is always considered valid, independently from any value of its attributes.
Return type bool

misc
Any other annotation.

It is compatible with CoNLL-U MISC field.

1.2. Submodules 9

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

colonel Documentation, Release 1.2.0

to_conllu ()

Returns a CoNLL-U formatted representation of the element.

This method is expected to be overridden by each specific element.

1.2.3 colonel.emptynode module

Module providing the Empt yNode class.

class colonel.emptynode.EmptyNode (main_index=None, sub_index=None, **kwargs)

Bases: colonel.base_rich sentence_element.BaseRichSentenceElement
Representation of an Empty Node sentence element

is _wvalid()

Returns whether or not the object can be considered valid, however ignoring the context of the sentence in
which the word itself is possibly inserted.

In compliance with the CoNLL-U format, an instance of type Empt yNode is considered valid only when
main_index is set to a value equal to or greater than zero (0) and sub_ index is set to a value greater
than zero (0).

Return type bool

main_index

The primary index of the empty node.

This usually corresponds to the value of the Word. i ndex after which the empty node is inserted, or to
zero (0) if the empty node is inserted before the first word of the sentence (the one with index equal to 1).

It is compatible with CoNLL-U 1D field, which in case of an empty node is a decimal number: the main
index here corresponds to the integer part of such value.

sub_index

The secondary index of the empty node.

It is compatible with CoNLL-U ID field, which in case of an empty node is a decimal number: the sub
index here corresponds to the decimal part of such value.

to_conllu ()

Returns a CoNLL-U formatted representation of the element.

No validity check is performed on the attributes; values not compatible with CoNLL-U format could lead
to an incorrect output value or raising of exceptions.

Return type str

1.2.4 colonel.multiword module

Module providing the Multiword class.

class colonel.multiword.Multiwoxrd (first_index=None, last_index=None, **kwargs)

Bases: colonel.base sentence element.BaseSentenceElement
Representation of a Multiword Token sentence element

first_ index

The first word index (inclusive) covered by the multiword token.

This usually corresponds to the value of the Word. index of the first Word which is part of this multi-
word token.

10

Chapter 1. colonel package

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

colonel Documentation, Release 1.2.0

It is compatible with CoNLL-U 1D field, which in case of a multiword token is a range of integer numbers,
where first and last bound indexes are separated by a dash (-): the first index here corresponds to the value
at left.

is_wvalid()
Returns whether or not the object can be considered valid, however ignoring the context of the sentence in
which the word itself is possibly inserted.

In compliance with the CoNLL-U format, an instance of type Mult iword is considered valid only when
first_index is set to a value greater than zero (0) and last_index is set to a value greater than
first_index.

Return type bool

last_index
The last word index (inclusive) covered by the multiword token.

This usually corresponds to the value of the Word. i ndex of the last Wo rd which is part of this multiword
token.

It is compatible with CoNLL-U 1D field, which in case of a multiword token is a range of integer numbers,
where first and last bound indexes are separated by a dash (-): the first index here corresponds to the value
at right.

to_conllu ()
Returns a CoNLL-U formatted representation of the element.

No validity check is performed on the attributes; values not compatible with CoNLL-U format could lead
to an incorrect output value or raising of exceptions.

Return type str

1.2.5 colonel.sentence module

Module providing the Sentence class.

class colonel.sentence.Sentence (e¢lements=None, comments=None)
Bases: object

Representation of a sentence.

This class is modeled starting from the CoNLL-U Format specification, which states that sentences consist of one
or more word lines. Each word line contains a series of fields, first of all an ID, the value of which determines
the kind of the whole line: a single word, a (multiword) token or an empty node.

Analogously, here a Sentence mostly consists of an ordered list of e lement s, which can be object of any
BaseSentenceElement’s subclass, commonly a Word, a Multiword or an Empt yNode.

Since the CoNLL-U format allows the presence of comment lines before a sentence, the comment s attribute is
made available here as a simple list of strings.

comments
Miscellaneous comments related to the sentence.

For the time being, in the context of this project no particular meaning is given to the values of this
attribute, however the following guidelines should be followed in order to facilitate possible future usages
and processing:

* the presence of the leading # character (which denotes the start of a comment line in CoNLL-U format)
is discouraged, in order to keep comments more format-independent;

» each comment should be always stripped from leading/trailing spaces or newline characters.

1.2. Submodules 11

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

colonel Documentation, Release 1.2.0

elements
Ordered list of words, tokens and nodes which form the sentence.

Usually this list can be freely and directly manipulated, since the methods of the class always recompute
their returned value accordingly; just pay particular attention performing changes while in the context of
iterations (see for example words () and raw_tokens () methods).

is_valid()
Returns whether or not the sentence is valid.

The checks implemented here are mostly based on the CoNLL-U format and on the most widely adopted
common practices among NLP and dependency parsing contexts, yet including a minimum set of essential
validation, so that you are free to use this as a foundation for other custom rules in your application.

A sentence is considered valid only if all of the following conditions apply:
* there is at least one element of type Word;

* every single element is valid as well - see BaseSentenceElement.1is_valid () and the over-
riding of its subclasses;

* the ordered sequence of the elements and their ID is valid, that is:
— the sequence of Word. index starts from 1 and progressively increases by 1 step;
— there are no index duplicates or range overlapping;

— the Empt yNode elements (if any) are correctly placed after the Word element related to their
EmptyNode.main_index (or before the first word of the sentence, when the main index is
zero), and for each sequence of empty nodes their Empt yNode . sub_index starts from 1 and
progressively increases by 1 step;

— the Multiword elements (if any) are correctly placed before the first Word included in their
index range, and each range always cover existing Word elements in the sentence;

e if one or more Word. head values are set (not None), each head must refer to the index of a Word
existing within the sentence, or at least be equal to zero (0, for root grammatical relations).
Return type bool
raw_tokens ()
Extracts the raw token sequence.

Iterates through elements and yields the only elements which represent the raw sequence of tokens
in the sentence. The result includes Word and Multiword elements, skipping all Word items which
indexes are included in the range of a preceding Mult iWord.

Empty nodes are ignored.

This method do not perform any validity check among the elements, so if you want to ensure valid and
meaningful results, please refer to is_valid ();unless you really know what you are doing, iterating an
invalid sentence could lead to wrong or incoherent results or unexpected behaviours.

Return type Iterator[Union[Word, Multiword]]

to_conllu()
Returns a CoNLL-U formatted representation of the sentence.

No validity check is performed on the sentence and its element; elements and values not compatible with
CoNLL-U format could lead to an incorrect output value or raising of exceptions.

Return type str

12 Chapter 1. colonel package

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str

colonel Documentation, Release 1.2.0

words ()
Extracts the sequence of words.

Iterates through e Iement s and yields Word elements only. This can be especially handy in many depen-
dency parsing contexts, where the focus mostly resides among simple words and their relations, ignoring
the additional information carried by empty nodes and (multiword) tokens.

This method do not perform any validity check among the elements, so if you want to ensure valid and
meaningful results, please refer to 1.s_valid();unlessyou really know what you are doing, iterating an
invalid sentence could lead to wrong or incoherent results or unexpected behaviours.

Return type Tterator[Word]

1.2.6 colonel.upostag module

Module providing the Upos Tag enumeration.

class colonel.upostag.UposTag
Bases: enum.Enum

Enumeration of Universal POS tags.
These tags mark the core part-of-speech categories according to the Universal Dependencies framework.
See also the UPOS field in the CoNLL-U format.

Note: always refer to the name of each member; values are automatically generated and thus MUST be consid-
ered opaque.

ADJ =1
adjective

ADP = 2
adposition

ADV = 3
adverb

AUX = 4
auxiliary

CCONJ = 5

coordinating conjunction

DET = 6
determiner

INTI = 7
interjection

NOUN = 8
noun

NUM = 9
numeral

PART = 10
particle

PRON = 11
pronoun

1.2. Submodules 13

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/enum.html#enum.Enum

colonel Documentation, Release 1.2.0

PROPN = 12
proper noun
PUNCT = 13
punctuation
SCONJ = 14

subordinating conjunction
SYM = 15

symbol
VERB = 16
verb

X =17
other

1.2.7 colonel.word module

Module providing the Word class.

class colonel.word.Word (index=None, head=None, deprel=None, **kwargs)

Bases: colonel.base_rich sentence_element.BaseRichSentenceElement
Representation of a Word sentence element

deprel

Universal dependency relation to the head or a defined language-specific subtype of one.
It is compatible with CoNLL-U DEPREL field.
head

Head of the current word, which is usually a value of another Word’s index or zero (0, for root gram-
matical relations).

It is compatible with CoNLL-U HEAD field.
index

Word index.

It is compatible with CoNLL-U 1D field.

The term index has been preferred over the more conventional /D, mostly for the purpose of preventing
confusion, especially with Python’s 1d () built-in function (which returns the “identity” of an object).
is _wvalid()

Returns whether or not the object can be considered valid, however ignoring the context of the sentence in
which the word itself is possibly inserted.
In compliance with the CoNLL-U format, an instance of type Word is considered valid only when index
is set to a value greater than zero (0).

Return type bool
to_conllu()

Returns a CoNLL-U formatted representation of the element.

No validity check is performed on the attributes; values not compatible with CoNLL-U format could lead
to an incorrect output value or raising of exceptions.
Return type str

Chapter 1. colonel package

https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

colonel Documentation, Release 1.2.0

1.3 Module contents

Colonel - a Python 3 library for handling CoNLL data formats

class colonel.Sentence (elements=None, comments=None)
Bases: object

Representation of a sentence.

This class is modeled starting from the CoNLL-U Format specification, which states that sentences consist of one
or more word lines. Each word line contains a series of fields, first of all an ID, the value of which determines
the kind of the whole line: a single word, a (multiword) token or an empty node.

Analogously, here a Sentence mostly consists of an ordered list of e lement s, which can be object of any
BaseSentenceElement’s subclass, commonly a Word, a Multiword or an EmptyNode.

Since the CoNLL-U format allows the presence of comment lines before a sentence, the comment s attribute is
made available here as a simple list of strings.

comments
Miscellaneous comments related to the sentence.

For the time being, in the context of this project no particular meaning is given to the values of this
attribute, however the following guidelines should be followed in order to facilitate possible future usages
and processing:

* the presence of the leading # character (which denotes the start of a comment line in CoNLL-U format)
is discouraged, in order to keep comments more format-independent;

¢ each comment should be always stripped from leading/trailing spaces or newline characters.

elements
Ordered list of words, tokens and nodes which form the sentence.

Usually this list can be freely and directly manipulated, since the methods of the class always recompute
their returned value accordingly; just pay particular attention performing changes while in the context of
iterations (see for example words () and raw_tokens () methods).

is_valid()
Returns whether or not the sentence is valid.

The checks implemented here are mostly based on the CoNLL-U format and on the most widely adopted
common practices among NLP and dependency parsing contexts, yet including a minimum set of essential
validation, so that you are free to use this as a foundation for other custom rules in your application.

A sentence is considered valid only if all of the following conditions apply:
* there is at least one element of type Word;

* every single element is valid as well - see BaseSentenceElement.1is_valid () and the over-
riding of its subclasses;

* the ordered sequence of the elements and their ID is valid, that is:
— the sequence of Word. index starts from 1 and progressively increases by 1 step;
— there are no index duplicates or range overlapping;

— the Empt yNode elements (if any) are correctly placed after the Word element related to their
EmptyNode.main_index (or before the first word of the sentence, when the main index is
zero), and for each sequence of empty nodes their Empt yNode . sub_index starts from 1 and
progressively increases by 1 step;

1.3. Module contents 15

https://docs.python.org/3/library/functions.html#object

colonel Documentation, Release 1.2.0

— the Multiword elements (if any) are correctly placed before the first Word included in their
index range, and each range always cover existing Word elements in the sentence;

* if one or more Word. head values are set (not None), each head must refer to the index of a Word
existing within the sentence, or at least be equal to zero (0, for root grammatical relations).
Return type bool
raw_tokens ()
Extracts the raw token sequence.

Iterates through elements and yields the only elements which represent the raw sequence of tokens
in the sentence. The result includes Word and Multiword elements, skipping all Word items which
indexes are included in the range of a preceding Mult iWord.

Empty nodes are ignored.

This method do not perform any validity check among the elements, so if you want to ensure valid and
meaningful results, please refer to is_valid ();unless you really know what you are doing, iterating an
invalid sentence could lead to wrong or incoherent results or unexpected behaviours.

Return type Iterator[Union[Word, Multiword]]

to_conllu ()
Returns a CoNLL-U formatted representation of the sentence.

No validity check is performed on the sentence and its element; elements and values not compatible with
CoNLL-U format could lead to an incorrect output value or raising of exceptions.

Return type str

words ()
Extracts the sequence of words.

Iterates through e lement s and yields Word elements only. This can be especially handy in many depen-
dency parsing contexts, where the focus mostly resides among simple words and their relations, ignoring
the additional information carried by empty nodes and (multiword) tokens.

This method do not perform any validity check among the elements, so if you want to ensure valid and
meaningful results, please refer to 1s_valid();unless you really know what you are doing, iterating an
invalid sentence could lead to wrong or incoherent results or unexpected behaviours.

Return type Tterator[Word]

class colonel.Word (index=None, head=None, deprel=None, **kwargs)
Bases: colonel.base_rich sentence_element.BaseRichSentenceElement

Representation of a Word sentence element

deprel
Universal dependency relation to the head or a defined language-specific subtype of one.

It is compatible with CoNLL-U DEPREL field.

head
Head of the current word, which is usually a value of another Word’s i ndex or zero (0, for root gram-
matical relations).

It is compatible with CoNLL-U HEAD field.

index
Word index.

It is compatible with CoNLL-U 1D field.

16 Chapter 1. colonel package

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator

colonel Documentation, Release 1.2.0

The term index has been preferred over the more conventional /D, mostly for the purpose of preventing
confusion, especially with Python’s 1d () built-in function (which returns the “identity” of an object).

is_wvalid()
Returns whether or not the object can be considered valid, however ignoring the context of the sentence in
which the word itself is possibly inserted.

In compliance with the CoNLL-U format, an instance of type Word is considered valid only when i ndex
is set to a value greater than zero (0).

Return type bool

to_conllu ()
Returns a CoNLL-U formatted representation of the element.

No validity check is performed on the attributes; values not compatible with CoNLL-U format could lead
to an incorrect output value or raising of exceptions.

Return type str

class colonel.EmptyNode (main_index=None, sub_index=None, **kwargs)
Bases: colonel.base_rich sentence_element.BaseRichSentenceElement

Representation of an Empty Node sentence element

is _wvalid()
Returns whether or not the object can be considered valid, however ignoring the context of the sentence in
which the word itself is possibly inserted.

In compliance with the CoNLL-U format, an instance of type Empt yNode is considered valid only when
main_index is set to a value equal to or greater than zero (0) and sub_ index is set to a value greater
than zero (0).

Return type bool

main_index
The primary index of the empty node.

This usually corresponds to the value of the Word. i ndex after which the empty node is inserted, or to
zero (0) if the empty node is inserted before the first word of the sentence (the one with index equal to 1).

It is compatible with CoNLL-U 1D field, which in case of an empty node is a decimal number: the main
index here corresponds to the integer part of such value.

sub_index
The secondary index of the empty node.

It is compatible with CoNLL-U ID field, which in case of an empty node is a decimal number: the sub
index here corresponds to the decimal part of such value.

to_conllu ()
Returns a CoNLL-U formatted representation of the element.

No validity check is performed on the attributes; values not compatible with CoNLL-U format could lead
to an incorrect output value or raising of exceptions.

Return type str

class colonel.Multiword (first_index=None, last_index=None, **kwargs)
Bases: colonel.base_sentence_element.BaseSentenceElement

Representation of a Multiword Token sentence element

first_index
The first word index (inclusive) covered by the multiword token.

1.3. Module contents 17

https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

colonel Documentation, Release 1.2.0

This usually corresponds to the value of the Word. index of the first Word which is part of this multi-
word token.

It is compatible with CoNLL-U ID field, which in case of a multiword token is a range of integer numbers,
where first and last bound indexes are separated by a dash (-): the first index here corresponds to the value
at left.

is_valid()

Returns whether or not the object can be considered valid, however ignoring the context of the sentence in
which the word itself is possibly inserted.

In compliance with the CoNLL-U format, an instance of type Multiword is considered valid only when
first_index is set to a value greater than zero (0) and last_index is set to a value greater than
first_index.

Return type bool

last_index

The last word index (inclusive) covered by the multiword token.

This usually corresponds to the value of the Word. i ndex of the last Wo rd which is part of this multiword
token.

It is compatible with CoNLL-U 1D field, which in case of a multiword token is a range of integer numbers,
where first and last bound indexes are separated by a dash (-): the first index here corresponds to the value
at right.

to_conllu ()

Returns a CoNLL-U formatted representation of the element.

No validity check is performed on the attributes; values not compatible with CoNLL-U format could lead
to an incorrect output value or raising of exceptions.

Return type str

class colonel.UposTag
Bases: enum. Enum

Enumeration of Universal POS tags.

These tags mark the core part-of-speech categories according to the Universal Dependencies framework.

See also the UPOS field in the CoNLL-U format.

Note: always refer to the name of each member; values are automatically generated and thus MUST be consid-
ered opaque.

ADJ

ADP

ADV

AUX

=1
adjective
= 2
adposition
=3
adverb
=4
auxiliary

CCONJ = 5

DET

coordinating conjunction

=6
determiner

18

Chapter 1. colonel package

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum

INTI = 7
interjection
NOUN = 8
noun
NUM = 9
numeral
PART = 10
particle
PRON = 11
pronoun
PROPN = 12
proper noun
PUNCT = 13
punctuation

SCONJ = 14

subordinating conjunction
SYM = 15

symbol

VERB = 16
verb

X =17
other

1.3. Module contents

colonel Documentation, Release 1.2.0

19

colonel Documentation, Release 1.2.0

20 Chapter 1. colonel package

CHAPTER 2

Python Module Index

21

colonel Documentation, Release 1.2.0

22 Chapter 2. Python Module Index

CHAPTER 3

Alphabetical Index

23

colonel Documentation, Release 1.2.0

24 Chapter 3. Alphabetical Index

Python Module Index

C

colonel, 15
colonel.base_rich_sentence_element, 8
colonel.base_sentence_element,9
colonel.conllu,?
colonel.conllu.lexer,3
colonel.conllu.parser,5S
colonel.emptynode, 10
colonel.multiword, 10
colonel.sentence, 11
colonel.upostag, 13

colonel.word, 14

25

colonel Documentation, Release 1.2.0

26 Python Module Index

Index

A

ADIJ (colonel.UposTag attribute), 18
ADJ (colonel.upostag.UposTag attribute), 13
ADP (colonel.UposTag attribute), 18
ADP (colonel.upostag.UposTag attribute), 13
ADV (colonel.UposTag attribute), 18
ADV (colonel.upostag.UposTag attribute), 13
AUX (colonel.UposTag attribute), 18
AUX (colonel.upostag.UposTag attribute), 13

B

BaseRichSentenceElement (class in
colonel.base_rich_sentence_element), 8

BaseSentenceElement (class in
colonel.base_sentence_element), 9

build() (colonel.conllu.lexer.ConlluLexerBuilder class
method), 3

build() (colonel.conllu.parser.ConlluParserBuilder class
method), 5

C

CCONIJ (colonel.UposTag attribute), 18
CCONI (colonel.upostag.UposTag attribute), 13
colonel (module), 15
colonel.base_rich_sentence_element (module), 8
colonel.base_sentence_element (module), 9
colonel.conllu (module), 7

colonel.conllu.lexer (module), 3
colonel.conllu.parser (module), 5
colonel.emptynode (module), 10
colonel.multiword (module), 10
colonel.sentence (module), 11

colonel.upostag (module), 13

colonel.word (module), 14

comments (colonel.sentence.Sentence attribute), 11
ConlluLexerBuilder (class in colonel.conllu.lexer), 3
ConlluParserBuilder (class in colonel.conllu.parser), 5

D

deprel (colonel.Word attribute), 16

deprel (colonel.word.Word attribute), 14

deps (colonel.base_rich_sentence_element.BaseRichSentenceElement
attribute), 8

DET (colonel.UposTag attribute), 18

DET (colonel.upostag.UposTag attribute), 13

E

elements (colonel.Sentence attribute), 15
elements (colonel.sentence.Sentence attribute), 11
EmptyNode (class in colonel), 17

EmptyNode (class in colonel.emptynode), 10

F

feats (colonel.base_rich_sentence_clement.BaseRichSentenceElement
attribute), 8

find_column() (colonel.conllu.lexer.ConlluLexerBuilder
static method), 3

first_index (colonel.Multiword attribute), 17

first_index (colonel.multiword.Multiword attribute), 10

form (colonel.base_sentence_element.BaseSentenceElement
attribute), 9

H

head (colonel.Word attribute), 16
head (colonel.word.Word attribute), 14

IllegalCharacterError, 5

column_number (colonel.conllu.lexer.IllegalCharacterError jjegalEmptyNodeError, 6

attribute), 5

column_number (colonel.conllu.parser.IllegalTokenError
attribute), 7

comments (colonel.Sentence attribute), 15

IllegalEofError, 6
IlegalMultiwordError, 7
NllegalTokenError, 7

index (colonel.Word attribute), 16

27

colonel Documentation, Release 1.2.0

index (colonel.word.Word attribute), 14
INTJ (colonel.UposTag attribute), 18
INTJ (colonel.upostag.UposTag attribute), 13

p_sentence_without_comments()
(colonel.conllu.parser.ConlluParserBuilder
static method), 6

is_valid() (colonel.base_rich_sentence_element.BaseRichSeptsen¢tileasemiany() (colonel.conllu.parser.ConlluParserBuilder

method), 8

static method), 6

is_valid() (colonel.base_sentence_element.BaseSentenceElemeasntences_one() (colonel.conllu.parser.ConlluParserBuilder

method), 9
is_valid() (colonel. EmptyNode method), 17
is_valid() (colonel.emptynode.EmptyNode method), 10
is_valid() (colonel.Multiword method), 18
is_valid() (colonel.multiword.Multiword method), 11
is_valid() (colonel.Sentence method), 15
is_valid() (colonel.sentence.Sentence method), 12
is_valid() (colonel.Word method), 17
is_valid() (colonel.word.Word method), 14

L

last_index (colonel.Multiword attribute), 18
last_index (colonel.multiword.Multiword attribute), 11

static method), 6

p_wordline_emptynode()
(colonel.conllu.parser.ConlluParserBuilder
static method), 6

p_wordline_multiword() (colonel.conllu.parser.ConlluParserBuilder
static method), 6

p_wordline_word() (colonel.conllu.parser.ConlluParserBuilder
static method), 6

p_wordlines_many() (colonel.conllu.parser.ConlluParserBuilder
static method), 6

p_wordlines_one() (colonel.conllu.parser.ConlluParserBuilder
static method), 6

parse() (in module colonel.conllu), 7

lemma (colonel.base_rich_sentence_element.BaseRichSentdfaxsBitiirens 7

attribute), 9

LexerError, 5

line_number (colonel.conllu.lexer.IllegalCharacterError
attribute), 5

line_number (colonel.conllu.parser.lllegalTokenError at-
tribute), 7

M

main_index (colonel. EmptyNode attribute), 17
main_index (colonel.emptynode.EmptyNode attribute),
10

PART (colonel.UposTag attribute), 19

PART (colonel.upostag.UposTag attribute), 13
PRON (colonel.UposTag attribute), 19

PRON (colonel.upostag.UposTag attribute), 13
PROPN (colonel.UposTag attribute), 19
PROPN (colonel.upostag.UposTag attribute), 13
PUNCT (colonel.UposTag attribute), 19
PUNCT (colonel.upostag.UposTag attribute), 14

R

raw_tokens() (colonel.Sentence method), 16

misc (colonel.base_sentence_element.BaseSentenceElementraw_tokens() (colonel.sentence.Sentence method), 12

attribute), 9
Multiword (class in colonel), 17
Multiword (class in colonel.multiword), 10

N

NOUN (colonel.UposTag attribute), 19

NOUN (colonel.upostag.UposTag attribute), 13
NUM (colonel.UposTag attribute), 19

NUM (colonel.upostag.UposTag attribute), 13

P

p_comment() (colonel.conllu.parser.ConlluParserBuilder
static method), 5

S

SCONI (colonel.UposTag attribute), 19

SCONI (colonel.upostag.UposTag attribute), 14

Sentence (class in colonel), 15

Sentence (class in colonel.sentence), 11

states (colonel.conllu.lexer.ConlluLexerBuilder attribute),
3

sub_index (colonel. EmptyNode attribute), 17

sub_index (colonel.emptynode.EmptyNode attribute), 10

SYM (colonel.UposTag attribute), 19

SYM (colonel.upostag.UposTag attribute), 14

p_comments_many() (colonel.conllu.parser.ConlluParserBuilder

static method), 5

p_comments_one() (colonel.conllu.parser.ConlluParserBuilder

static method), 5
(colonel.conllu.parser.ConlluParserBuilder
static method), 6
p_sentence_with_comments()
(colonel.conllu.parser.ConlluParserBuilder
static method), 6

p_error()

t_ANY _error() (colonel.conllu.lexer.ConlluLexerBuilder

static method), 3

t_cl_FORMY() (colonel.conllu.lexer.ConlluLexerBuilder
static method), 4

t_c2_LEMMAJ() (colonel.conllu.lexer.ConlluLexerBuilder
static method), 4

t_c3_UPOS() (colonel.conllu.lexer.ConlluLexerBuilder
static method), 4

28

Index

colonel Documentation, Release 1.2.0

t_c4_XPOS() (colonel.conllu.lexer.ConlluLexerBuilder W

static method), 4 Word (class in colonel), 16
t_c5_FEATS() (colonel.conllu.lexer.ConlluLexerBuilder word (class in colonel.word), 14
static method), 4 words() (colonel.Sentence method), 16

t_c6_HEAD() (colonel.conllu.lexer.ConlluLexerBuilder words() (colonel.sentence.Sentence method), 12
static method), 4

t_c7_DEPRELY() (colonel.conllu.lexer.ConlluLexerBuilder X
static method), 4

t_c8_DEPS() (colonel.conllu.lexer.ConlluLexerBuilder
static method), 4

t_c9_MISC() (colonel.conllu.lexer.ConlluLexerBuilder
static method), 4

t_COMMENT() (colonel.conllu.lexer.ConlluLexerBuilder
static method), 3

t_DECIMAL_ID() (colonel.conllu.lexer.ConlluLexerBuilder
static method), 4

t_INITIAL_v9_NEWLINE()
(colonel.conllu.lexer.ConlluLexerBuilder
method), 4

t_INTEGER_ID() (colonel.conllu.lexer.ConlluLexerBuilder
static method), 4

t_RANGE_ID() (colonel.conllu.lexer.ConlluLexerBuilder
static method), 4

t_v0_v1_v2_v3_v4_v5_v6_v7_v8_TAB()
(colonel.conllu.lexer.ConlluLexerBuilder
method), 4

to_conllu() (colonel.base_rich_sentence_element.BaseRichSentenceElement
method), 9

to_conllu() (colonel.base_sentence_element.BaseSentenceElement
method), 9

to_conllu() (colonel. EmptyNode method), 17

to_conllu() (colonel.emptynode.EmptyNode method), 10

to_conllu() (colonel.Multiword method), 18

to_conllu() (colonel.multiword.Multiword method), 11

to_conllu() (colonel.Sentence method), 16

to_conllu() (colonel.sentence.Sentence method), 12

to_conllu() (colonel.Word method), 17

to_conllu() (colonel.word.Word method), 14

to_conllu() (in module colonel.conllu), 8

tokens (colonel.conllu.lexer.ConlluLexerBuilder at-
tribute), 5

type (colonel.conllu.parser.Illegal TokenError attribute), 7

U

upos (colonel.base_rich_sentence_element.BaseRichSentenceElement
attribute), 9

UposTag (class in colonel), 18

UposTag (class in colonel.upostag), 13

\Y

value (colonel.conllu.parser.IllegalTokenError attribute),
7

VERB (colonel.UposTag attribute), 19

VERB (colonel.upostag.UposTag attribute), 14

X (colonel.UposTag attribute), 19

X (colonel.upostag.UposTag attribute), 14

xpos (colonel.base_rich_sentence_element.BaseRichSentenceElement
attribute), 9

Index 29

	colonel package
	Subpackages
	Submodules
	Module contents

	Python Module Index
	Alphabetical Index
	Python Module Index

